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Introduction 

Chemistry is a quantitative science. “Quantitative” 
means that the vast territory between yes and no is 
decomposed into identifiable, reproducible subterri- 
tories. “Science” implies a basic theoretical framework 
from which all conclusions flow in a strictly logical 
fashion. But neither definition carries with it a 
recognizable picture of the way that advances in 
chemistry actually occur. And this is the standard 
frustration of the theoretical chemist: an imaginative 
and experienced practitioner will reliably analyze a 
situation by what can only charitably be called fuzzy 
logic and end up with a decently reliable quantitative 
assessment. How does one use this as a clue to  
develop an incisive, accurate, quantitative structure 
without volumes of mathematical and computational 
analysis which effectively bury the essentials and 
often improve very little on the quantitative results? 
Perhaps a way to earn a living, but of dubious social 
utility. 

Some Biased History 
The topic that this Account is going to settle down 

into is that of density functional theory, a quantitative 
descriptive vehicle for many aspects of many-body 
theory. The associated viewpoint is one that devel- 
oped slowly but by the end of the 1950s was a well- 
understood tool among the equilibrium classical fluid 
aficionados.1*2 The problems in its application to 
quantum ground states-in particular the kinetic 
energy density functional problem-and thermal equi- 
librium ensembles were discussed extensively by the 
same group, but did not reach the outside world until 
the elegant review of Hohenberg and K ~ h n . ~  Even 
then, it took the technical tour de force of Kohn and 
Sham4 to carry applicability past the traditional 
Thomas-Fermi theory and its extensions. And the 
fact that an in-principle constructive definition was 
available5 took even longer to  reach this community. 

While the quantum density functional approach was 
exploding, classical fluid theorists were largely bask- 
ing in the brilliance of increasingly sophisticated and 
successful integral equation methods6 in the bulk fluid 
context. As the efforts required to  deal with the 
nonuniform real world become more onerous, density 
functional methods, heavily colored by empiricism and 
consequently simpler to  apply, became more attrac- 
tive. And the idea of incorporating coarse-grained or 
weighted densities, which had hitherto been present 
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in rudimentary form, except for a widely unread 
publication’ in which it was based upon an exact 
model solution, put the classical fluid theorists in the 
lead once more.8 My feeling is that the bases of this 
development, now translated to the quantum domain 
as well? are not as firm as they should be, and I would 
like to offer some comments aimed in this direction. 

Integral Equations 
The thermodynamics of fluids serves as basic input 

to  much of chemistry. I t  encompasses not just the 
traditional relationships between intensive and ex- 
tensive quantities-pressure, volume, temperature-but 
also the relationships that recognize the spatial non- 
uniformity that dominates the configurations of so 
many real systems, that due to containment and 
consequent short- and long-range order, to  internal 
interfaces, to the effect of external fields, and so on. 
Theoretical studies have proceeded along two major 
directions. One of them, the integral equation method,6 
is primarily a development of the last few decades. In 
essence, one realizes that, for a system with given 
external and pair interaction forces alone, it should 
be sufficient to  focus on a typical pair of particles i f  
the environment due to all of the others can be 
precisely simulated. The result of focusing is to  obtain 
the mean density of the pair, m(r ,r ’ ) ,  a function of six 
variables-two triplets of coordinates-for simple flu- 
ids. If this known, then the “profile equation”, the 
relation between density n ( r )  and applied force field, 
is obtained by just balancing thermal, external, and 
internal forces on a unit volume of fluid (Figure 1)- 
-the first of the famous YBG (Yvon-Born-Green) 
hierarchy of relations among multiparticle densities. 
The “closure problem” is that of expressing the pair 
density in terms of the observable particle density n(r), 
and many suggestions have been made, based on 
various sequential approximations, resulting in rou- 
tinely reliable results for simple fluids, and similarly 
for complex fluids, but here at a computational cost 
that can be daunting even with modern parallel 
computers. 

Density Functionals 
Another way at getting at the structure of a het- 

erogeneous fluid is by the condition that the density 
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f , 
Figure 1. Force balance on element of volume. 

profile at a given external force field, temperature, and 
chemical potential adjusts itself to  minimize the 
(Helmholtz) free energy of the system. In fact, since 
the variational procedure required to check this 
results precisely in an expression in which the exter- 
nal potential is given in terms of the density, this 
(inverse) profile equation can be “integrated back to 
the free energy by turning up the density pattern, say 
from 0, in which everything is trivial, to the actual 
system profile. The result of course cannot depend on 
the intermediate details of turning up the density, in 
which case the profile equation is termed “integrable”; 
it had better be! It is the development of expressions 
for the free energy in terms of-as a functional of-the 
density that has dominated the current course of 
theoretical studies of nonuniform fluids. This func- 
tional can involve all sorts of nonlinear and nonlocal 
(e.g., integrals depending on the density at  several 
points at once) combinations. But the result is a set 
of recipes that yield to  relatively painless computa- 
tions, perhaps without the typical high accuracy of the 
integral equation approaches. The recipes almost 
universally make use of reliable data on uniform fluids 
to  fill in unknown parameters or even functions in 
model expressions for free energy obtained by experi- 
ence, by mathematical artifice, and often by rather 
rapid hand-waving. Of course, intelligent interpola- 
tion has a habit of working out much better quanti- 
tatively than one could justify a priori, but it in some 
sense says that one knows the answer from the outset 
and, thus, exerts a bias against qualitative advances. 
I would like to describe here a growing current activity 
in which the class of recipedo is severely restricted 
both by quite general requirements and by the neces- 
sity of reducing properly to  exact expressions when 
these are available. 

van der Waals Model 
A discussion of free energy density functionals has 

no choice other than that of starting with van der 
Waals’s elegant work of a century agoll (the great 
James Clerk Maxwell is said to  have taken off a year 
to study the Dutch language in order to fully appreci- 
ate van der Waals’s doctoral thesis!). From our 
current sophisticated viewpoint, it is simplicity itself: 
the interaction between particles in a simple fluid is 
divided into two parts (Figure 2): a short-range 
repulsive core 4c so short in range that a fluid of cores 
alone can be regarded as locally uniform, with its free 
energy just the sum of all uniform local pieces. Then 
crucially, there is an attractive tail &, long in range 
compared to the correlation range of fluctuations in 
the fluid, so that the pair density is just the product 
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Figure 2. van der Waals decomposition of interaction. 
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Figure 3. Liquid-gas interface profile. 

I z 
Figure 4. Density profile near hard wall. 

of the component densities, and the tail energy is 
computed in this fashion. Finally, the energy due to 
the external fields is added, and that is the end of the 
story. This may be simple, but it is remarkably 
effective. The density profiles resulting from it do a 
good job of representing two-phase interfaces, wetting 
layers, electrode-bounded electrolytes, and many other 
situations. 

Defects 
The van der Waals theory is hardly perfect, but is 

there anything fundamentally wrong with it? Well, 
yes: at long range, at short range, and in the middle. 
To start, imagine a planar liquid-gas interface. The 
van der Waals profile (Figure 3) is a not unreasonable 
rapid transition-a couple of interparticle spacings- 
from gas density to  liquid density. But something is 
missing. Any child knows that the interface will be 
riddled with thermally excited surface waves (i.e., 
capillary waves), and many children would guess that 
the larger the area of interface, the “softer” it is, and 
the larger the amplitude of the waves, leading to a 
broadening of the profile in the long-exposure snapshot 
that constitutes the definition of an equilibrium 
profile. The interface softening due to these correlated 
long-range fluctuations12 is absent in the van der 
Waals theory. 

What is wrong at short range? Suppose that the 
fluid in question is bounded by an infinite hard wall, 
itself only a model of reality, of course. The infinite 
force felt by a particle at the wall effectively decouples 
it from the other particles, so that the fluid density 
must jump from 0 inside the wall to  its ideal gas value 
PIRT, where P is the system pressure (Figure 4). This 
extremely rapid local charge is simply not allowed in 
the van der Waals picture, in which everything tends 
to be averaged over the range of the tail potential. In 
fact, in the opposite case of a highly attractive wall, 
one would expect the particles to  really pile up at the 
wall, creating an arbitrarily high density. But the van 
der Waals approximation never allows the density to  
be higher than its maximum for a uniform fluid, and, 
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Figure 5. One-dimensional lattice gas. 

for example, for really hard core interactions, this can 
never exceed the reciprocal volume of the core. 

Perhaps the trouble is that the fluid that the van 
der Waals model is modeling is not quite the one we 
thought, but is a more complicated object, with 3, 
4-any many-body forces. Then at least we would 
know precisely what approximation is being made. But 
no, we may in fact not be using any microscopic model 
whatsoever! This requires a more detailed analysis, 
simplest to  carry out when the repulsive core is 
omitted from the discussion. It is then possible to  
work backwards and find the many-particle prob- 
ability distribution that the model has to  come from, 
only to  discover that it typically contains regions of 
negative probability,13 a clear impossibility. 

Lattice Gas 
We had better build up our approximate models 

with greater care. A reliable way of doing so is to work 
with toy models or caricatures that can be solved 
exactly-so we know where we stand-and then ex- 
trapolate to  reality. What is the simplest nontrivial 
fluid model that exists? It depends. If one really 
demands little balls and breakable springs, that is one 
thing, and capable of getting quite complex. But we 
will start instead with a much more rudimentary set 
of models, that of “lattice gases”. The prototypical 
lattice gas is simply a spatial grid, with each grid point 
or site being either occupied by a particle or not 
occupied, and a rule telling you how much you gain 
or lose in energy by occupying two adjacent sites. 
Because only one particle at a time can occupy a given 
site, there is the equivalent of a hard core built in, 
and only the strength of interaction remains as a 
parameter. Of course, the state of the system is also 
controlled by thermodynamic variables of chemical 
potential and temperature. Even this system can be 
solved exactly only in special cases (e.g., not on a full 
three-dimensional space), but the big complication is 
that, as in the van der Waals approach, we want to 
be able to  accommodate an arbitrary external force 
field in order to be able to produce an arbitrary density 
pattern {n,} of mean number of particles at the sites 
{XI .  

Let us crawl a bit before we start walking. Imagine 
a one-dimensional integer lattice in an external po- 
tential field {h,} (including chemical potential), and 
with given next neighbor interaction potential (Figure 
5) .  Can we find its free energy? This is not trivial, 
but can be done,14 and it ends up with an intrinsic 
free energy (subtracting out the obvious h,nx per site) 
that is simply a sum of pair contributions f(n,,n,+d 
just like the microscopic energy, and very much in the 
van der Waals mold. The expression for f(n,,n,+d is 
a little complicated, but may be found by solving the 
trivial two-site problem. But how do we tackle lattices 
that are not just one-dimensional? One intermediate 
step is to consider a Bethe lattice of coordination 
number q. Here each site is joined to q other sites (q 
= 3 shown in Figure 61, and the lattice is built up in 
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Figure 6. Unit of Bethe lattice. 

X Y 
Figure 7. Two-row triangular ladder. 

this fashion. It looks locally like a regular lattice- 
hexagonal in this case-but only locally because it has 
no closed loops at  all. Nonetheless, it is a start, and 
it can be s01ved.l~ Doing so, one finds exactly the same 
kind of sum of pair contributions as in the one- 
dimensional case: better and better. 

Entropy Functional 
A more systematic way to build up, say, a two- 

dimensional triangular lattice might be to just add row 
after row. But matters come to a grinding halt almost 
at once, at the two-row or ladder level. Here, try as 
we will, there seems to be no neat way of writing the 
intrinsic free energy in terms of the site densities. 
What has gone wrong is that the ladder has feedback 
loops: site x can communicate with z not only directly 
but also via y ;  technically, the ladder is no longer 
simply connected. There are at least two ways of 
proceeding. First, suppose the loops are small, as in 
the ladder (Figure 7). The interactions around the 
loop can be regarded as a special case of a multisite 
interaction, i.e., in the ladder, so that the topology 
of the loop is irrelevant. The only effective way of 
including multisite interactions is to place them at the 
same level as one-site interactions, and any two-site 
interactions must come along for the ride. This 
introduces the concept of the entropy functional. 

Equilibrium statistical mechanics is formally de- 
scribed by the grand partition function s, or  by the 
grand potential B = -kTlnE, which is -PV for a 
uniform fluid in volume V. For a nonuniform fluid, 
say a lattice gas, 52 also serves as a universal generat- 
ing function in the sense that n, = aB/ah,, as well as 
nxy = aB/aqxy for two-site interactions, nryr = aQ/aq, 
for three-site interactions, etc.; here of course one has 
many independent variables, B({n,},{n,y},{n,z}). The 
intrinsic Helmholtz free energy is obtained by sub- 
tracting out the average on:-site energy: F = B - 
chxnx, so that now h, = -aF/an,, and various inter- 
mediate quantities arise by subtracting out other 
energy components. In particular, the (negative) 
entropy -TS = B - Drnx  - &xyn, - CqXyzn, ... has 
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Figure 8. Ring lattice. 

all components removed and so is a purely geometric 
object, with the interactions appearing as the derived 
quantities h, = aTS/an,, qxy = aTS/an,, etc. 

Is the entropy functional much more complicated? 
Not necessarily. For a simply connected network, 
such as a Bethe lattice with nearest neighbor interac- 
tion, -S is just the sum of two-site contributions 
o(n,,n,,n,). And then, more importantly, if the lattice 
is built up of triangles, simply connected in the sense 
that exactly one independent path of triangles con- 
nects two triangles-as in the triangular ladder (Fig- 
ure 7)-then -S is simply the sum of three-site 
contributions utn,,ny,nz,n,,n,,nyz,n,!, a bit more com- 
plicated but conceptually just as simple.16 In par- 
ticular, if there is actually no three-site interaction, 
aS/an, = 0 allows us to get rid of the triplet density. 

Multiconnected Lattices 
The entropy approach just described is impractical 

if the interaction loops are too large. The prototype 
for such a nonsimply connected lattice is a ring of sites 
(Figure 8), so in the second approach, we try really 
hard to find the intrinsiic free energy F for this model. 
By the way, the fact that the full free energy-including 
the exte-mal hrnx terms-is a minimum, shows that 
h, = -aF/an,, so that the profile equations are auto- 
matically obtained. At any rate, solving the ring turns 
out to  be very nontrivial, until one notices that there 
is a collective variable C, a combination of local 
potentials and densities, that has the same-value at 
each site. Then, if we are willing to write F({n,},C) 
as a function of the n, and C, i.e., more variables than 
the number of degrees_ of freedom of the ring, things 
get-much ~1earer . l~ F can be chosen so that h, = 
-aF/an, still h_olds, but now F is stationary ~ t h  
respect to C: aF/BC = 0 ,  and when this is done, F is 
still a sum of pair terms f(n,,n,+l,C) with just an 
additional collective amplitude term A((?). In other 
words, by expanding our viewpoint to  include descrip- 
tions both in the small and in the large, the system 
takes on a simplified structural form, and the relation 
between the small and the large is encoded in the 
stationary properties of the free energy. 

Once you are sensitized to  them, multilevel descrip- 
tions appear repeatedly in studies of lattice gases. For 
this purpose, of course, more complex networks must 
be investigated. One technique for doing sol8 starts 
by associating a collective amplitude with each string 
of (q = 2)  sites and then combines parallel channels, 
reducing the network to a skeleton of bifurcating (q 
> 2) sites to  which the same technique can be applied. 
Another one introduces subsidiary variables to  close 
loops of an initially simply connected network or to 
identify sites of a spatially overlapping Bethe lattice. 
But the take-home message is always the same: one 
ends up by expanding the space of local densities {n,} 
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Figure 9. Effective van der Waals interaction. 

to  include a set { Ca} of nonlocal amplitudes which are 
related by the statjonarity of a free energy on the 
expanded space: aF((_n,},{Ca})/aCa = 0, with profile 
still given by h, = -aF/an,. And entropy generalizes 
in a very similar fashion. 

van der Waals Revisited 
Our excursion into lattice gases has provided us 

with invaluable background for the continuum fluids 
that we are really interested in. But the relation 
between discrete and continuous versions has to be 
spelled out. On the one hand, we can imagine the 
lattice as a coarse grid sampling of the continuum, 
with the advantage that interaction potentials need 
only be defined on a few grid points; models of the 
solidification transition, in which there is a natural 
grid attached to the system, have been constructed 
along these lines. On the other hand, we may use the 
lattice simply as an accounting device, with the limit 
of vanishing grid spacing always in mind. In the latter 
case, a clearly suggested strategy would be to  take the 
continuum limit of lattice models that approximate a 
full grid decomposition of physical space. 

Let us start then with the simplest model represen- 
tation, that of a simply connected tree-like structure, 
e.g., a nearest neighbor Bethe lattice, as in Figure 6. 
But we want the branches to  go an arbitrary distance 
in an arbitrary direction; the mesh spacing here is the 
length of the smallest interaction link. As the result 
of this construction, continued indefinitely, any two 
points in physical space are arbitrarily close to two 
sites that are “nearest neighbors”. The density of 
paths connecting two points in this way is underes- 
timated, but the interaction amplitude can be suitably 
increased. The result is a weird but not nonsensical 
approximate topology. Rather than try to describe the 
structure of the associated interaction, let us simply 
go to the entropy viewpoint in which, after the 
resulting approximate geometry is accounted for, the 
interactions came along automatically. 

As we have seen, the entropy for this model is just 
the sum of (one-site and) two-site entropies for those 
sites that interact-here, every pair, in the limit. 
There is no difficulty in taking the limit, with the 
obvious correspondence zCr - jdn,  n,.h - n(r), nmh2 - n2(r,r’) for mesh volume z. We find that, to  within 
an irrelevant additive constant, -S consists of the 
anticipated one-body part jn (r )  In n(r) dr and two-body 
part (1/2)Jjn2(rr‘) ln(nz(rr’)ln(r)n(r‘>) dr dr’, together 
with an extra correlation contribution (-1/2)jj(n2(r,r’) 
- n(r)n(r’)) dr dr‘. Consequently, we can write down 
the q(r,r’),nz(r,r’) “profile equation” and use it to 
eliminate n2(r,r’), obtaining an intrinsic free energy 
n n ] .  The result is very close to the coreless mean field 
van der Waals free energy, but not quite: the mean 
interaction uses the combination @ = kT(1 - 
exp(-q/kT)) instead of q (where K is the Boltzmann 
constant) (Figure 9). Thus it can deal directly with 
infinite hard particle potentials-van der Waals 
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cannot-due to being based on a valid, if curious, 
physical model. 

The Next Step 
The inclusion of small feedback loops is certainly 

the next step in a program of representing a full 
spatial grid by an approximating network. We have 
found that this process is easy to  start, by the simple 
expedient of “thickening” the Bethe lattice so that it 
becomes a tree composed of triangles. The entropy is 
then a sum of local triplet contributions, and we can 
take the continuum limit just as we did before, 
resulting in the addition of an obvious triplet contri- 
bution of the form (1/6)jjjn3 ln(nsnnnln2nzns) and the 
subtraction of an integrated triplet correlation. If 
there is no explicit triplet potential, the condition 0 = 
dS/dn3 allows us to solve for and eliminate n3. Inter- 
estingly, the solution obtained in this waylg is pre- 
cisely the famous Kirkwood superposition approxima- 
tion that, with obvious arguments, n3 = n2nandnnn. 
Following this, the continuum equivalent of h = 
aTS/an, q2 = aTS/an2 gives us a pair of integral 
equations to solve. 

The end result of this process is a slightly modified 
“CHNC” equation, one of the more reliable integral 
equation approximations (the result of a diagrammatic 
expansion technique in which only diagrams-i.e., 
networks-constructed recursively by series and par- 
allel combinations are retained). Is this good? Not 
really, because if our improved lattice-continuum 
approximation is only able to reproduce a reasonable 
integral equation-with all of the attendant compu- 
tational difficulties-our enthusiasm for the approach 
tends to  wane. Perhaps the systematic increase in 
local complexity is not the best use of the insights we 
have gained from lattices. 

Weighted Density Functionals 
The inception of global nonsimple connectivity is 

certainly a more dramatic alteration of the structure 
of a lattice gas network. But we know that the 
simplest way of representing this more complex struc- 
ture is by expanding the roster of variables on the 
network to include “collective” amplitudes associated 
with large groups of sites. Translated to continuum 
fluids, we would have augmented the local density by 
densities at poorer levels of resolution. In fact, one of 
the very few nonuniform continuum fluids for which 
the free energy density functional is exactly known-the 
gas of one-dimensional hard rods-has a free energy 
that is most simply represented by regarding the 
average density over the volume of a core, h(x) = Jn(y) 
w(x-y) dy [where w(x-y) = 1 for x - y inside a core, 
else 01, as a coarse-grained density field to be used in 
a joint description. One possibility that this suggests, 
for non-hard-core interactions in other than one- 
dimensional space, is that we devise a model built 
upon the same kind of weighted density, but with a 
specifically appropriate weight function’ w(r-r’); in- 
deed, there is no reason why the weight cannot involve 
the density as weW w(r--r’,h(r)). So now everything 
depends upon having enough (but not too much!) 
information about known properties of the system, 
available to find w(r-r’,h(r)) once the structure of the 
model, i.e., the way that n(r) and fi(r) enter into it, is 
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decided upon. The major source of information rou- 
tinely used is the pair distribution (technically, the 
direct correlation function) of the uniform fluid as a 
function of pair distance and density. This general 
approach has indeed been very effective in studies of 
both simple and complex fluids, in a wide variety of 
nonuniform states. 

But let us survey the scene from Olympian heights. 
The trouble with guessing a reasonable form for the 
coarse-grained fi(r) is that while it seems to allow full 
play for one’s intuitive feelings as to the essentials of 
the structure, it amounts in the end to being guided 
solely by mathematical and computational conven- 
ience rather than by any sophisticated structural 
concepts. This is both ad hoc and potentially danger- 
ous; for example, the usual recipes fail in the very 
important case of Coulomb forces and require further 

However, we know from our lattice gas 
studies that (a) the additional “collective variables” can 
be very complex, but (b) the implicit equations that 
they satisfy are most readily obtained in the form of 
stationary fre? energy or entropy conditions. This 
format, e.g., F[n,fil, is not novel in the continuum 
framework either,21 but again employs a general form 
mathematically extrapolated from weak nonunifor- 
mity expansions. So it is easy to criticize, but that is 
not necessarily constructive. What more rational 
suggestions are there? Now one must equivocate. On 
the one hand, judging from the few exactly solved 
systems, evidence for the necessity of a hierarchical 
structure, such as fln,fi,E, ... I is compelling. But on 
the other hand, even though the nature of the required 
f i  wil l  come automatically from stationarity in the form 
SFIdfi = 0, dF/dH = 0, .,. this is not helpful until one 
has established the nature of the functional form of 
F ,  presumably from solvable models and limiting 
cases. And no preconceptions allowed: the coarse- 
grained ii for a two-phase interface enters only22 via 
derivatives! 

The Future 

The above certainly suggests a strategy, but it is 
scarcely the only one. What is holy about the free 
energy density functional, the entropy density and 
pair density functional, and similar entities? Even if 
one focuses on observable conjugate pairs such as 
density and external field-not an unreasonable 
restriction-conjugate pairs (whose cross-derivatives 
satisfy integrability conditions) can be constructed in 
other ways, e.g., {n(r) exp(-B,dr)>l and {exp(Bp(r))}, 
which might make for a simpler description. And of 
course, if one wants to  introduce other indirectly 
observable quantities such as n2(r,r’), why not consider 
such as nearest neighbor pair distributions, which are 
much closer to  any topology one might like to  graft 
onto the system? It will be interesting to  see how the 
next decades relegate to  embarrassing obviousness 
and/or oblivion our proud edifices of the moment. 

Science is a social activity, and the roster of scientists who 
have motivated, guided, or otherwise strongly biased the 
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